Euler integral

From HandWiki

In mathematics, there are two types of Euler integral:[1]

  1. The Euler integral of the first kind is the beta function [math]\displaystyle{ \mathrm{\Beta}(z_1,z_2) = \int_0^1t^{z_1-1}(1-t)^{z_2-1}\,dt = \frac{\Gamma(z_1)\Gamma(z_2)}{\Gamma(z_1+z_2)} }[/math]
  2. The Euler integral of the second kind is the gamma function [math]\displaystyle{ \Gamma(z) = \int_0^\infty t^{z-1}\,\mathrm e^{-t}\,dt }[/math]

For positive integers m and n, the two integrals can be expressed in terms of factorials and binomial coefficients: [math]\displaystyle{ \Beta(n,m) = \frac{(n-1)!(m-1)!}{(n+m-1)! } = \frac{n+m}{nm \binom{n+m}{n}} = \left( \frac{1}{n} + \frac{1}{m} \right) \frac{1}{\binom{n+m}{n}} }[/math] [math]\displaystyle{ \Gamma(n) = (n-1)! }[/math]

See also

References

  1. Jeffrey, Alan; Dai, Hui-Hui (2008). Handbook of mathematical formulas and integrals (4th ed.). Amsterdam: Elsevier Academic Press. p. 234–235. ISBN 978-0-12-374288-9. OCLC 180880679. https://www.worldcat.org/oclc/180880679. 

External links and references