Euler integral
From HandWiki
In mathematics, there are two types of Euler integral:[1]
- The Euler integral of the first kind is the beta function [math]\displaystyle{ \mathrm{\Beta}(z_1,z_2) = \int_0^1t^{z_1-1}(1-t)^{z_2-1}\,dt = \frac{\Gamma(z_1)\Gamma(z_2)}{\Gamma(z_1+z_2)} }[/math]
- The Euler integral of the second kind is the gamma function [math]\displaystyle{ \Gamma(z) = \int_0^\infty t^{z-1}\,\mathrm e^{-t}\,dt }[/math]
For positive integers m and n, the two integrals can be expressed in terms of factorials and binomial coefficients: [math]\displaystyle{ \Beta(n,m) = \frac{(n-1)!(m-1)!}{(n+m-1)! } = \frac{n+m}{nm \binom{n+m}{n}} = \left( \frac{1}{n} + \frac{1}{m} \right) \frac{1}{\binom{n+m}{n}} }[/math] [math]\displaystyle{ \Gamma(n) = (n-1)! }[/math]
See also
- Leonhard Euler
- List of topics named after Leonhard Euler
References
- ↑ Jeffrey, Alan; Dai, Hui-Hui (2008). Handbook of mathematical formulas and integrals (4th ed.). Amsterdam: Elsevier Academic Press. p. 234–235. ISBN 978-0-12-374288-9. OCLC 180880679. https://www.worldcat.org/oclc/180880679.
External links and references
- Wolfram MathWorld on the Euler Integral
- NIST Digital Library of Mathematical Functions dlmf.nist.gov/5.2.1 relation 5.2.1 and dlmf.nist.gov/5.12 relation 5.12.1
This article includes a list of related items that share the same name (or similar names). If an internal link incorrectly led you here, you may wish to change the link to point directly to the intended article. |
Original source: https://en.wikipedia.org/wiki/Euler integral.
Read more |